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Two-speciesd-dimensional diffusive model and its mapping onto a growth model
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In this work, we consider a diffusive two-specislimensional model and study it in great detail. Two types
of particles, with hard core, diffuse symmetrically and cross each other. For arbitrary dimensions, we obtain the
exact density, the instantaneous, as well as noninstantaneous, two-point correlation functions for various initial
conditions. We study the impact of correlations in the initial state on the dynamics. Finally, we map the
one-dimensional version of the model under consideration onto a restricted solid-on-solid growth model with
three states and solve its dynamics.

DOI: 10.1103/PhysRevE.65.016117 PACS nun)er02.50.Ey, 68.35.Fx, 66.30h, 05.50+q

I. INTRODUCTION functions. We then exploit the exact results for the two-point
correlation function to study a restricted solid-on-solid
Stochastic reaction-diffusion models have recently at{RSOS [6,7,18,19 growth model.

tracted much interest in the last decadee, e.g.[1,2] and The paper is organized as follows. In Sec. Il, we present
references therejnthe latter appearegtirectly or via map-  the generastochastidormalism within which we will work.
ping) as models for traffic flowj3], kinetic biopolymeriza- In Sec. llI, for the model under consideration, we compute in
tion, [4], reptation of DNA in gel$5], interface growttj6,7], ~ arbitrary dimensions, the density for various initial states and
etc. in the presence or absence of initial correlations. In Sec. IV,

In this context, simple symmetriSEP [8] and asymmet- for a translationally invariant version of our model, we
ric exclusion processes, in one dimensigkSEP [1,2,9  evaluate the instantaneous two-point correlation functions in
play a particular role because of their relationships with in-arbitrary dimensions. In particular, in one-spatial dimension,
tegrable quantum spin systerttdeisenberg chainsaand be- We assume both cases where initial correlations are absent or
cause of their connection with the Kardar-Parisi-ZhangPresent. In Sec. V, we introduce and solve a growth model of
(KPZ) equation{10], directed polymers in random med, RSOS type “with three states.” This analysis is carried out
and shock formatiorisee, e.g.[1] and references thergin for different initial states(correlated and uncorrelated-i-
These models have been extensively studied and the ASERlY, in Sec. VI, we calculate for systems with uncorrelated
with open boundary conditions, as a simple driven diffusion(but random as well as correlated initial states the nonin-
model, exhibits a rich dynamical behavior involving different Stantaneous two-point correlation functions.
nonequilibrium phase transitions in the steady states. They
can be studied exactly on the basis of the so-cattedrix
approach(MA), an algebraic approach based on an ansatz
for the probability distribution which is related to the inte- Consider an hypercubic lattice of dimensidnwith N
grability of some quantum spin chains. This approach prosites (N=L¢), whereL represents the linear dimension of the
vides the full solution of the ASEfand also the SBERmodel,  hypercube, and periodic boundary conditions are imposed.
including the full phase diagram, density profile and, in prin-Further, assume that local bimolecular reactions between
ciple, any equal-time correlation functions. Though, only fewspeciesA and B takes place. Each site is either emtie-
explicit results are knowh11] about the dynamical correla- noted by the symbol 0) or occupied at most by one particle
tion functions, much work has been done on the static propof type A (respectivelyB) denoted in the following by the

erties. _ _ index 1 (respectively, 2). The dynamics are parametrized
The MA has been generalized to solve the stationaryyy the transition ratesl”fg, where a,8,7,6=0,1,2:

states of one-dim_ensional models With_ _seve_ral spddigk Y(a,B)#(7,6), FZ23 a+B—y+é.
and, recently, a first-order phase transition in some models
has been found13] (see also14] where different results WB V5
were obtained, independently, for the same mpdel XTgg , with I'35=0, V(“’lﬁz)#(% 9).
The lack of exact results for the dynamics of multispecies For example, the ratd’;; corresponds to the process
modelg[ 15,16 (in particular in dimensiod>1 see als¢17] BB—AB, while conservation of probability leads 7]
and references therginhas motivated us to study in some =—(F19+ T+ T+ 2+ 7294+ T31+T124 122,
detail thedynamicsof a two-species model, which is related  The state of the system is determined by specifying the
to the models introduced by Arnet al.in [12,13. We com-  probability for the occurence of configuratigm at timet. It
pute explicitly, in arbitrary dimensions, the density, and theis represented by the k&P(t)) =X, P({n},t)|{n}), where
two-point instantaneous and noninstantaneous correlatioie sum runs over theM3configurations K=LY). At site i
the local state is denoted by the kat)=(100)" if the site
i is empty,|n;y=(010)" if the sitei is occupied by a particle
*Email address: mauro.mobilia@epfl.ch of type A(1) and|n;)=(001)" otherwise. By now it is well
"Email address: pierre-antoine.bares@epfl.ch established that the master equation governing the dynamics

Il. THE FORMALISM AND THE MODEL

Probability conservation impliesl’ggz—E(Q,B)i(a,ﬁ,)
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of the systems can be rewritten as an imaginary-time Schro= 0=(x|Hm m+e«=0, Wheree® denotes the unit vector in
dinger equatiori20]: the directione (1<a=<d) andm designates a point of the
P hyperlattice labeled with help of itsfl components:m
ﬁ'P(t»: —H[P(1), D =(mg, ... mg).
In this work, we assume that there are only symmetric
whereH denotes the Markov generator, also caitachastic ~ néarest-neighbor jump processes. A partmléres_pecnvglg/,
Hamiltonian and is in general neither Hermitian nor normal. B) can jump, with ratel'5;=I";5>0 (respectively,I'g;

Its explicit form is given below. We also introduce theft ~ =T'55>0) to an adjacent sitén thed directions if the latter
vacuum<}| which is defined by was previously empty. Such processes are symbolized by the

“reaction” AJ— A (respectivelyBZ«— IB). In addition

<~|EE (ny] @ we assume that when two different particlasand B are

=g ' adjacent, they can cross each other with 1af¢=T3%>0.

N _ _ ~ These processes are schematized by the reatin BA.
Probability conservation vyields the local equation The local Markov generator corresponding to this system,
(stochasticity of H): (x|H=ZeaZm(X|Hmm+ee  Which acts on two adjacent sites andm-+e“ reads
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where the same notations as in R¢&l,17] have been used. One should, however, pay attention to distinguish the case of
Probability conservation implies that each column in thethe correlation function of adjacent sites from the general
above representation sums up to zero. Locally, the leftase.
vacuum(| has the representatigfy|=(111)®(111). In general, whe'%5, T'gf, %, '35, T'33, '3 are inde-
The action of any operator on the left vacuum has apendent parameters, the equations of motion of the multi-
simple summation interpretation. This observation will bepoint correlation functions constitute an open hierarchy and
crucial in the following. Below we shall assume an initial the dynamicsare not soluble. The stationary states of such
state| P(0)) and investigate the expectation value of an op-Systems have been studied 2] by Arndtet al. Recently it
erator O (observables such as density ptO)(t)  has been showfi3] with the help ofquadratic algebratech-
=(Y|0e MP(0)). n_lques[l:_%,lZ and nume_rlcal means that an asymmetric ver-
From Eq‘(3)' we can compute the equgtions of _motion of Sion of this model exhlblt%fl_ﬂr?(t)-i)rdoezr_ph%s_e tg?gsmon, inits
the density and of the two-point correlation functiqng]. ~ Stationary state, wher"jo=1"5;=I"3=I'g;=1";;=1 and
For the density, we have I'3=q. The steady state of the density of the same model
has also been studied independently by Rajevetkyl. [14]
who obtained different results; ifi4], the authors, argued
that there is no phase transition from the “mixed phase”to a
“disordered phase.”
Here we assume

d d -
gi(na®(0)= g7 (xInm e P(0))

== 2a <n§{B(Hm,m+ea+ Hmfe“,m)>(t)-

Iio=Tor=To6=To=T5=T5=T, ®)

(4)

For the derivation of the equation of motion of two-point which guarantees that the equations of motion of the corre-
correlation functions we would proceed similarly, aq17]. lation functions close in arbitrary dimensions.
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From now on we focus on the soluble model described by With help of the asymptotic expansion of the Bessel func-
Eq. (3) with equal rates, according to treplubility con-  tions and approximating, e "+t~ fdn_ e "4, we ob-
straints (5). Before studying statistical and dynamical prop- @
erties of this model, let us comment on its solvability. In the
single-species reaction-diffusion models, the solvability in-

tain from Eq.(8) the long-time behavior of the density at site

herent to the closure of the hierarchy was explained in the P
framework of the duality transformations. In fact, it has been erf Li2=m, —erf Ma
) : . d
shown that the spectrum of the single-species stochastic A Var't VaT't
Hamiltonian (with the solubility constrainisis identical to (Nn(1))=pa(0) 1_:[1 5 :

the spectrum of an anisotropic spin-1/2 Heisenberg quantum ®)
HamiltonianX XZ in a magnetic field20]. As shown inf21],

the situation is quite different for the multispecies problemyyhere erf¢) denotes the usual error function.

and a general, comprehensive and unified understanding of gjmilarly, we have for the density of particl@s

the formal solubility is still lacking. However, for the model

under consideration here, it has been shd®a] that the d
stochastic Hamiltoniari3), can be mapped, via a similarity (nﬁ(t))zps(o)ﬂ 2 e 2 _.(2T't)
transformation, to an exactly integrable quantum spin-1 =1\ 1/2<m/ =L ‘o

model introduced by Sutherlan@3].

f L—m, f( L/2—m,
er —ern| ———
JaTt JaTt

d
Il EXACT STUDY OF THE DENSITY ~ pg(0) 1—[ 5
In this section, we study the density of the system, in a=1
particular, when translation invariance is brokghe initial (9)
density is nonuniformnand when correlations in the initial
state are present. We now pass to the case where the distribution of par-

It follows from Eq. (4) that the density of speciep ticles for each speciese (A,B) is given by («; denotes a
e(A,B) at site m, labeled with itsd componentsfm  real dimensionless constarén initially correlated distribu-
=(my, ...,my)], obeys to the following linear differential- tion:
difference equatiofl7]:

. g <n£n>(0)=Pj(0)<i_I[ . Om, ot K;
G (0= =2P () (O+T X (0], o)+ (M)
(6) Xi:ﬂ ; |mi|yi(1_5mi,0)>- (10

We first consider the situation where particles are initiallyThe exact densities then refti7]
nonuniformally distributed. Namely, we assume that particles
of type B are located in the region of spade/2<x, j _
<L, ... L/2<x4<L while particles of typeA are initially (np)(t)=p;(0)

11 | (e I, (2I'1))

confined in the region €x;<L/2,...,0sx4<L/2 (we as-

sume thatL is even. Within each of the two regions, par-

ticles of each type are distributed uniformally with respective +x; [ ( e 2 > |m{| =l m—my (200) | .
densitiespg(0) and pa(0). Solving Eq. (6) for this initial =1 m{ #0

condition, we find (12)

R d For «;#0, in the limitm~L>1 andl't>1, with c=m/L
(nh(1)y=pa(0)e 29> (n2(0)) T[] Im,—m (2T'1) and u=L%4I't. When o=0(1), then u~oc?2L2%/4lt
m’ a=1 =m?/4T't, and we obtain

L 2
=pa(0)e~2d [@(——m )I _mw (2Tt } [ ¢ 2e U
pa(0) % IL 1015 =malm, -m (2TD 1 f o<y<l,
g =1 (1—)(4uc’T't) 7"
d _ 2
_ 0 —2Ft| _ (2l |, 7 . 14+e U ! .
pa(O 1T (sz Co P >) D o~ T )ﬂg;(y.) ol
=Ma™ i=1 (wI't)
e d
wherel ,(z) denotes the usual modified Bessel function. We (e”” "In(4uaTt)) f =1,
have also introduced the Heaviside functi®fx)=0 if x { (aT't) 92
<0 and®(x)=1 if x>1. (12)
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wherel(v)=2=.k™”,#>1 is the Riemann zeta function. J i i i
It follows from these results that foy,# 1, the density Ecea(t)ZZF Crea(t) + , > {Cga_ear(V)
decays as a power law of time. However, notice that when @ #Fa=1...d
initial correlations arestrong (i.e., 0<y;<1), the algebraic . -~
decay of the density isonuniversalit depends ofy;). When +Cefa+ea,(t)}— (2d— 1)C'efa(t) ,
initial correlations araveak(i.e., y;>1), the algebraic decay
of the density isuniversal Hence the case wherg=1 is
marginal and there are logarithmic corrections to th@ver- d i
sal behavior o (0=0. (16)
For initial states decribed by Eq10), with v;=0 and
«;#0, then we have Solving the latter, we have, using known properties of modi-
fied Bessel functionfsee the Appendix, EQAL)]:
—do?u
. e I'1/2)—-T1/2u) d
ni)(t)~p;(0 + i . i ~
< m>() p]( ) (477Ft)d/2 [ /_471_ ] C:,](t): E C'rj,(O)e 4dFtH1 Ira—r’(4rt)
r'+#0 a= “«
1 ! 13 ‘ t
|t ert) | (13 +cioye ] 1, (4rt)—dee—4d“
a=1 ¢ 0
g d
Therefore the dimensionality hf\(is;za nontriv!al effect, when ><Cieja(t—7')<——4dl") H |, (4T'7)
d<2, the densities decay as ““. Otherwise, whend ar a=1 @

>2, (nhy)~t L

On the other hand, whes; =0, the initial density of spe-
ciesj vanishes on the hypercube except at the origin, where
its value isp;(0). In this case, the limit considered above,

¢ - d
—4drf dre4cl (t—n [l 1, (ar7)
0 a=1

d

yields +2Fftdre‘4d“2 Coa(t—7[I; +1(4T'7)
0 a=1 a
—do?u
<n£n>(0)~m. (14 +|,a_1(4rr)]a1;[a I, (4T'7). (17)

Restricting the solution tmne-spatial dimensignwith r

Notice that because of conservation of the number of par-E|m_||>0 the Laplace transform yields,j < (A,B)]

ticles, in thetranslationally invariant situationwe simply
have ) B
cly=e "> cl(0){I,(4Tt)+1,, _4(4Tt)} (18

r'=1

pa(D)=pa(t=0)=pp, pg(t)=p(t=0)=pg. (19
and more generally,
IV. INSTANTANEOUS TWO-POINT CORRELATION

FUNCTIONS FOR TRANSLATIONALLY INVARIANT CLi()=e"* > CL(0) {1, 1(4Tt)+1,,_(4T1)}.
SYSTEMS r'=1 (19

In this section we compute exactly the two-point correla-
tion function for translationally invariant systems, in arbi- Let us now consideone-spatial dimensioand assume that

trary dimensions for different initial states. the initial correlations are given by
The equations of motion for the connected correlation
functions  C/(t)=C" (t)=(nin})(t) — pip;= (NNt (1) Cl0)=kr ", 1=0, le(AABB,AB). (20
—pipj,(i,j)e(A,B), read, with the notation: r
=(rq, ... fg,...1q99=m—1, wherea=1,... d. We discuss the casp¢|>0 while the casex;=0 corre-

sponds either to the situation where no particle is present on
the lattice initially, or, when all sites of the lattice are occu-
iCiri(t)= —4FdCiri(t)+2F pied by particles qf §pecié_s(qr j)- An alternative is that the
ot system would be initially in its steady state. When a single
d species is present initially, say specids we recover the
% dl -+ (), rl|=2, known problem of symmetric diffusion of hard particlés
azl (CrreaD+Cealt), Il + @+ A. When the lattice is fullor empty initially, no
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dynamics takes place. A single-species one-dimensional prgoint connected correlation functions in the lifit>1 with
cessA+A— T+ with a correlated initial state as in Eq. v=_L2/8l't<x [17].

(20) has been studied i8] It is useful for the sequel to introduce the definitions of
Again we can infer the asymptotic behavior of the two-the auxiliary functiong17]:

L b |

N : (21)

v e*U'ZU
Fo(v,o,v)= p 1—v|+1 .

l_V|
-T > 0(1+0)?

fl(U,O',V|)E

(22)
We distinguish two regimes
(i) Forr<L, with r?/gl't<1 ando=r/L,
( K Fi(v,o,v)
AT if 0<wpy<1,
Vam(8I't)"2
Kk[2¢(v .
Cr(t)~ L('),] it »>1, (23
(87I't) 12
kK In[8l'v(1— 0o )t]
f V|—1
\ (87I't)1?
(i) Forr>1r=o0L~L, we have
( Folv,o,v))
K|(2’—" 0=y<1,
VAm(8I't)"2
2
l+e 77 )
e {U0) I 0
(87I't)Y?
2
"7V In(8l'vot
K€ n(8l'vot) foy=1
[ (8aIn)'”

As for the density, it follows from these results that for where, as aboveg #0.
1 #1, the (connectedcorrelation functions decay as a  The asymptotic behaviorl(I't>1 with v=L2/8"t<o
power law of time. When initial correlations astrong(i.e., ando,=r,/L) of the connected correlation functions is then
0<w,<1) the power-law decay of the correlation functions[17]:
is nonuniversal. In contrast, when initial correlations are
weak (i.e., v,>1), the algebraic decay of the correlation
functions isuniversal The case where,= 1 is marginaland

e ; . narg Ch(t
logarithmic corrections to thaeniversal behavioarise. (V)
In arbitrary dimensiond=1), we consider a translation- 1 \dd
ally invariant random but uncorrelated intial state, described K| 1+ ﬁ) Hl Fra(v,04,1=0), T1,<L,
by “

EQ

K|

1 d
1+ﬁ) 3 le,a(v!o-a!VIZO)v ra~L>1,

Cl(0)=x,,l e (AABB,AB), (25) (26)
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where the quantities; , and.F, , are obtained, respectively, r
from Egs. (21) and (22) on the substitution ofr by o, sh,(t)= 21 [1—xanA(t) —xgnE(t)]. 27
=r,/L. m=

Therefore, in the model considered here, we have
max|sh, ;1 (t) — dh,(t) | = max(xa—1|,|xg—1|,1), in-
stead of the usual constraipgh, ,,(t)— éh,(t)|=1 of the
conventional RSOS models. The mean displacement of the
interface read< sh,(t))=r(1—xapa—Xgpg) thus, if one

_ _ _ _ wants to impose a zero mean displacement of the interface ,
In this section, we introduce a growth modelrestricted e have to require that,pa+Xgpg=1.

solid-on-solid(RSOS type with “three states,” by exploit- In this section we are interested in the computation of the
ing a mapping of the one-dimensional model studied in thejyctuations ofsh; i(0):
previous sections.

Let us briefly recall that the RSOS growth models are,
e.g., useful to describe the spatial fluctuations of (iee-
dimensional, of lengtiv) interface location in the magneti- ror—r'+1
zation profile between coexistent phases in two-dimensional + 2 > [Xi<”f\n|A+rr>(t)
models of ferromagnets, such as in the zero-field planar Ising =1 I=1
model[2]. In such models, at zero temperature, every path A_B
minimizing the energy of the systen is a sequenck lbihary (7 n'“ YO+ 2xaxg(ning (D],
numbersn;=0,1 with j=1,... L. The stochastic variable (28
n; has the valuen;=0 if the jth segment of the interface
steps upwardgin an angle ofm/4). The valuen;=1 corre- herew(r,t) is the physical width of the interface.
sponds to the case where the segments steps downward w"‘h Using the fact tha(i,j) < (A B)] dlats!_ <ni ni )
an angle ofr/4. The quantities; =0,1 can be interpreted as (t) 2F[(n nl )(t)— (n n Y1) and m E”}*'
occupation numbers relating the interface heighaccord- “salat(nin +’>+(1t) 2 [(ni n“ }(t)—(ni-n] S>:1
ing to hj—h;_;=1-2n; [2]. In this case the displacement (01 m . merl m mt1

. ) : (t)], we obtain the following equation of motion for the
oh, (1), at timet of the segment of the interface from the sites width:
j1 to jo>jq, with r=j,—j;>0 is given by &h,(t)
=31_41[1-2ny(t)] and thug sh, ,;— sh,|=1.

Here we consider an extension of the above model. WefW(r ,t)
consider that the configurations minimizing the enefgy ot
zero temperatube are of the form {x,ny+xgn? xan5
+xgn5, .. xAnL+xBnL} where the discrete stochastic
vanablexAn +xBn can takethree values. The casgAn
+Xgn=0 again corresponds to the situation wherejtthe with W (L) =wA(1t=0)=(Xa+Xg)*+1—2(paXa
segment steps upwards with an angle o#. The case + peXg).

XANf+XgNP=Xa (respectivelyxani+xgn®=xg) describes Forr>1, we thus have

the situation where thejth segment forms an angle

arctan(1-x,) [respectively, arctan(2xg)] with the hori- ) 5 t o An AA
zontal. Whenxg=0 (respectively,x,=0) andx,=2 (re- wA(r,t)=w (r10)+4rf0dt,[XA{Cr (t")—=Cy(t")}
spectively,xg=2), we recover the above-mentioned two-

state RSOS growth model. In this sense the growth model +x3{CBB(t" ) — CBB(t")} + 2xaxs{CPB(1")
which we study hereafter is a “three-states” extension of the AB.)

usual RSOS mod¢PR,7,18,19. In addition the mapping with —Cr ()}, (30
the diffusive model is clear, the presence of particle of spe-

ciesA (respectivelyB) at sitej translates in the language of \here

the growth model with the fact that the related segment of
the interface forms an angle arctan{,) (respectively,
arctan(1-xg)) with the horizontal. In this picture, the jump-
ing of the diffusive particles correponds to the fluctuation of
the orientation of the related segments of the interface. +2 E (r—r")[xa(nhn m+r )(0)

We consider a translationally invariant system; the dis- r'=1

lacement of théone-dimensionalinterface, at time, from A B
the sites Ky t0 k,>k;, with r=k,—k,>0 is given by BN ) (0)+ 2xxe(May  )(0)]
hy,(t) —hy (t)= oh.(t), where (31

V. THE MAPPING ONTO A RESTRICTED SOLID-ON-
SOLID GROWTH MODEL WITH “THREE STATES”

([8h ()12 =W(r,t)=[(xa+xg)*—1]r?

= AT [X{CPM ) — AT +x5{C BB —C TR}

+2xaxg{CrE( —CLAD}],  r>1, (29

W2(r,0)=[(Xa+Xg)?+1—2(paXa+ peXs)]r?

016117-6



TWO-SPECIESI-DIMENSIONAL DIFFUSIVE MODEL . . . PHYSICAL REVIEW E 65016117

with help of the formula[24]:4T fidt'e *"'1 (4I't’)  w(r,t)2—w(r,0)2

=A4Tte M 15(4Tt) + 1,(4T't) ]+ n[e M (4Tt) — 1] Tt

+2e” 'SR 1(n—K)1(4T't), and with the explicit expres- = (Xq—Xg)2\ /2_{1+ O[T ™ 1]+ (Xa—Xg)?
sion of the correlation functiond 8) and(19), we obtain the 77
following exact expression fow(r,t):

dt’
Xr2>1( 1) fO\/S I't’

x{exgd — (r+r'—1)%8nTt']
+exd —(r—r")28alt' {1+ O[(r—r")"2]}. (33

w2(r,t) —w?(r,0)

4“2 [X2CAA(0) +X3C5P(0) + 2XaxgCh(0) ]

=t Thus for the initial condition considered here, whgp
r4r/ =2 #Xg, it f0||OV\/IS from Eq. (33) that the fluctuations grow as
A~ 1/4
X[ X (r+r’—k—1)1(4Tt) w(r, )~ (I't) ™ o _
k=1 On the other hand, it is known that for tffiat interface

(or “sawtooth” initial state) whose dynamlcs are coded in a

ot two state modebh, =3 _(1—2n%), the fluctuations grow
+ kZl (r'=k=r)I(4I't) ~(T't)Y4 [7,18 Z In the situation considered here, the
N quctuatlons still grow asv(r,t) ~ (I't)¥* and thus the details
r'-2 of the model and its “three-state” character only appears
—2> (1" =K1 (4Tt)—1,,_1(4T1) | (32)  through the amplitudex(A—xB)z. Whenx,=xg=1, the ini-
k=1 tial configuration corresponds to a straight line and, accord-

ing to Eq.(33), there are no fluctuations. Let us also note that
when, e.g.x,=2 andxg=0, theB particles play the role of
the vacancies in the two-state model and the m¢#él is

We will now specifically focus on two kinds of initial exi%“é mapped onto the well-studied two-state model
states: 9,4

(i) We assume first that the system is initially character- pre(gt)envc\:ls gfoivr\w/itlig\llisotrl?g;igr]les fluctuations én(t) in the
ng tg ar\;v :Iteégii?dgefeilﬁgéc E;r;ayﬂ?lfus;a rtl;l:tsé Ig];(;))?e We assume that particles of typeandB are distributed
—1/2(ABAB. ..)+|BABA. . .)), with xa+xg=2 (in this  2ccording to18]
case(sh,(t))=0). This initial flat interface leads topa
=pg=1/2, and for the connected initial correlation func- cl(0)=xr=",1=0) e(AA,BB,AB), (34)
tions, we haveeA(0)=(—1)"/4=CB80)=—C"¥(0).

It follows from Eq.(31) that the initial fluctuations in this
case readv?(r,0)=r[4r+ 2(xp,—xg)2—1], for r>1 andr
even. Therefore, we also hav&(1t)=3.

For this initial configuration, the expressionl8)

which corresponds, via the mappif@j/), in the language of
the growth model, to an interface with initial fluctuations

given by Eq. (31), where (nyn' . )(0)=C/(0)

T _ _ tpipj, (i,]))e(AB).

simplifies ~ and  we have C{A(t)=C2B(t)= iP] : . .

—CB(t)= — (e T4)I,(4T't). The general expression Let us define the following quantity:

(32 of the fluctations reads  w2(r,t) _
—Wz(r,0)=(XA—XB)ZFdet'e_‘m,{|0(4Ft')+2,121 V:m|n(VAA,VBB,VAB). (35)

(=) [l4r —1(4Tt")+1,_,,(4Tt")]}. From this expres- With help of Eq.(29 and Egs.(20) and (23), we can
sion, using the asymptotic behavior of the Bessel functionsgompute the asymptotic expression of the fluctuations for
it is possible to obtain the long-time behavigior I't I't>1 andr>1, with v=L%8I't and o=r/L=0(1) (we

>1, r>1) of the fluctuations assume that,xg# 0), which reads
( 2I't _
W[fl(v,a,v)—i’:z(v,a',v)] if 0<wv<i,
mV o
w(r,H)2—w(r,02~{ \2rte(v)(1—e o) if  »>1, (36)

2T't 2 .
?[In(Sth)—e“’ VIn(8l'vet)] if w=1,
\
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where the quantitiest; and F, have been defined in Eqgs. specificsingle-speciesnodels(see, €.9.[18,27-29).

(21), (22), and&(v) is the usual Riemann zeta function.
We see that in the presence of initial correlati¢d4), the

fluctuations are dominated by the smallest initial correlation

exponentv. Therefore, ifv= v, (respectivelyy=vgg), the

dominant contributior§36) to the fluctuations are the same as

for a correlated two-state model whexg=2 and xg=0
(respectivelyx,=0 andxg=2) where theB (respectively,
the A) particles play the role of vacancigs8].

From Eg.(36) we see that initial correlations affect the
long-time behavior of the fluctuations of the height displace-
ment of the interface when the correlations are “strong

enough” (i.e., 0<v»<1), thus w(r,t)~(I't)?>~ 4 Con-
versely, for “weak” initial correlations ¢>1) we recover
the usual fluctuation exponent(r,t)~(I't)¥* The inter-
mediate casev=1, corresponds to thenarginal behavior
wherew(r,t)~ (I't)Y4{InTt.

Let us first consider an uncorrelated initial distribution

1-pa(0) = pg(0) | “*°
pa(0) ,
rs(0)

[P(0))=

such that

(N (0)NP(0))=pA(0) 81+ pA(0)2(1— 81,
(nE(0)n(0))=pg(0) 8+ pe(0)2(1— &),

(NH(0)NP(0))=(nE(0)nf(0))=pa(0)pa(0)(1— &p,)-

For the sake of completness, and to conclude this section,

we compute the spatiotemporal height correlati(;[r’n}l(t)
— hrz(O)]2>, with 1<r,;<r,=<L for the initial state(34). To

do this we have to anticipate some results of the Sec. VI. In

fact one computes

([h,, () =h,(0)]%)—=([h,,(0)—h, (0)]*)

T2

=[w2<r1,t>—wz(rl,on—zg1 gl XAL(NN(H)NE(0))

i rI2

_<nf*(0)nﬁ(0)>]—2gl k§=)1 (x&[(nB(t)nP(0))

—(nP(0)NE(0)) ]+ 2xaxg[(N(1)NE(0))

—(nf(0)ng(0))1}, (37)
where the expressions 6off®(t)ng-2(0)) are given in Egs.
(49—-(51). The asymptotic behaviorl't>1, 1<r;<r,
<L) of Eq. (37) is obtained with the help of Eq$49)—(51)
and reads[26]: ([, (t)—h;,(0)]%—([h,,(0)~h, (0)]?)

~[w?(r1,t) —w?(r1,0)]. Therefore, the long-time behavior

of <[hr1(t)—h,2(0)]2> also obeys EQq(36), where, in this
caseo=r,/L.

(39)
We then have
(N(HNR(0)) = pa(0) +(pa(0) — pA(0))
Xazll_l___d e @M, (2T1), (39
(N(HNF(0))
=pa(0)pe(0)| 1= 11 &7y - (2I'D)
=(ng(Hnf(0)), (40)
(Ne(HNP(0)) = pg(0) +[pg(0)— p§(0)]
x [T e, _ (2rt). (41

a=1...d

We are interested in the asymptotic behavibt¥$1 andu
=L2/4A't<) of the above functions in the two regimes:
(i) [m,—1,/=r,~L>1, in this caser,=r,/L=0(1).
(i) |[m,—1,|/=r,<L, in this cases,=r,/L=O(1lL).

It is worth noting that the autocorrelation functions are

It is interesting at this point to compare the results ob-obtained in the second regimép). We then have

tained here and the Family-Wilcsek Ansd&WA), devel-

oped for the description of a ballistic deposition model,

which predictsw?(L,t) ~t*#f(L?/t??) [25,26. Here, be-
cause of the diffusive nature of the modzek 2 and thus we
get (i) for the flat interface an exponeat=1, and for the
case(ii) a=max(1,2-v). In both casegi) and (ii), when

v>1, in the regimeL?>T't (i.e.,v>1) we obtain a scaling

function f(L?/t) ~const, in agreement with FWA.

VI. NONINSTANTANEOUS TWO-POINT CORRELATION
FUNCTIONS

In this section, we compute exactly the noninstantaneous
two-point correlation functions for various initial states.
Similar quantities have already been computed, for some

(ni(Hnf(0))

d
[pa(0)— p2(0)]e™ 2, 7o
+O(1hY),

2
=pa(0)+
pa(0) (47T1)32

(42

d
2 2
- otu
a
e =

(NRONP(0) = pa(0)pe(O)] 1=t

=(n(t)nf(0)),

016117-8
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(nB(t)nf(0)) (N(HNP(0))=(nF(t)n5(0))

d _ —2I't
=pg(0)e 2", (2T't)
<pB<0>—pé<0>)e1§1 oo

=p5(0) + +O(149). +Kgg > |r'| 2ese=2TY_(2It).
r’'#0

(44) (51)

(47Tt)9?

In these regimes, we have a power-law decay of correlation gecayse all the processes in the evolution operator are
functions §,])  (A,B)) namely, symmetric (unbiasedl there is no drift, therefore
) (n2(Hng*(0)) = (n2P(H)ng *(0)).

. . (i) In higher dimensionsd=2),
(i (Nl (0)) ~ (I't)~¥2%e~ 2, 72y, (45)

. . A A _ —
Let us now pass to the case where the initial state is cor-  {Mm(t)N[*(0))=pa(0)e~2"" 711_[ o 'mg-m (210
related according to

a=41...

. . +Kaa > I1
(Ni(0)Nf(0)) =1 (1=6 olral =%, (M1, mitg) 7 he
a=1,... d @

X|m =1, | " ae=2MN (2T,

ro=Im,—lal, AZ>0, (ij)e(AB),

(52
KCi;>0,dis(l,m)>0, (46)
(MONP(0)=Kpg X 11
and (My#ly, ... my#lg) @=1--.d
(Ny(0)N(0))=pi(0)p;(0) &; - (47) X|m),—1,|~*Ree 2N (2T),
Notice that in one dimension the initial state E¢46) and (53
(47) is translationally invariant and reads
. . _ ‘ B B _ —2drI't ,
(0N (0)) = (! (O)N(0)) =Ky (1~ &, r (MA(ON()=pe(0e > LI tm, (20
+pi(0)6 60, Kij=Kji, A=A . Kea 3 11
(48) (Mi#ly, ... my#lg @=1...d
This translational invariance which is brokgsee Eq.(46)] ><|m;—la|’A§Be’2“Ima_mr(2Ft),
in higher d=2) dimensions leads to two regimes: “
(i) We begin with the one-dimensional case=(1), here (54)
r=r,=|m—1|. Because of the initial translational invariant
state, we expect that the noninstantaneous correlation func-
tions only depends on=m-—1, and we obtain (N (HN(0))=Kga > 11
(My#ly, ... mj#lg @=1--d
A A _ A A o
<nm(t)nl (O)>_<nr (t)n0(0)> X |m;—|a|7ABAe72n| mifm.'(zrt)-
= pa(0)e~ 2 (2Tt '
pa(0) (2I't) (55)

+K r'|-Aane” 2 (2T, - . . -
AAr%:O " (21 We observe that in higher dimensions, because of the initial

correlations, the noninstantaneous correlation functions no

(49 longer depend opm,—1,/.
We can express the asymptotic behavior of these nonin-
Aty mBraY — ~Basg-2Tt stantaneous correlation functions in an unified way including
{Mm(H)N(0)) ’CABEO Ir|™Saee™ (2110 both d=1 and d=2 cases. Assuming that,=|m,—1,|
A ~Im,|>1, withr ,=0o,L andu=L%/4l't<w, I't,r>1, the
=(Nu(H)N;(0)), (50 asymptotics reafi(i,j) € (A,B)]
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(MOn](0)) BN
m a=1..d|1-A3 V 7
1
X—————|+O(t™ %),
4(ul o2t) i’
0<Afi<l. (56)
Moreover,
1 d
. . 2
1 J ~ — . - Ua -
<nm(t)n|(0)> (47Trt)d/2( pl(o)e Zl uaI,]

+/cija:]1'[ | g(A;})JrO(tZd)) . AT>L

(57)

PHYSICAL REVIEW E 65016117

over in the dynamics between the casesttbng and weak
initial correlations.

We mapped the one-dimensional version of the reaction-
diffusion model on a “three-states” RSOS-type growth
model. Using the exact, instantaneous correlation functions,
we computed the exact expression of fluctuations of the in-
terface for the latter model. We specifically considered the
case of a “flat interface” where the fluctuations grow as
(T't)Y4 as in the corresponding “two-state” growth model;
the three-state nature of the model considered only appears
in the amplitude. We also considered the case where the ini-
tial configuration is translationally invariant, random and
correlated. We saw that the initial correlations are “strong,”
they affect the long-time behavior of the fluctuations of the
displacement interface. Conversely, “weak” initial correla-
tions, do not affect the dominant term and the fluctuations
still grow as [Ct)¥4 This is analogous to what happens in
the two-state RSOS systems where initial correlations affect
the long-time behavior of the widti8].

Finally we computed in arbitrary dimensions the exact
noninstantaneous two-point correlation functions for initially

WhenAf=1, we have the marginal case with logarithmic uncorrelated states as well as for cases where correlations

corrections

d
. ) 1 2
(OO~ pi(0)e 2, 725,

+i; 1T In(4ue, T +0(t2) |,
a=1...d

Af=1. (58

were present. Here we again observed the effecttiming
initial correlations on the dynamics and a crossover between
regimes wherestrong and weak initial correlations takes
place.

We conclude this work by addressing an interesting ques-
tion based on the similarity of thetochastic Hamiltonian
under consideration with the integrable Sutherland’s quan-
tum spin system[22,23. It is known that for the one-
dimensional SEP model, the relation with the Heisenberg
chain has been fruitful to obtain(dynamical) matrix formu-
lation of the probability distribution, which allowed to solve
the (dynamical)density profile for a SEP model with open

Again, strong initial correlations lead to an algebraic decayPoundary conditions(particles were injected and ejected

of correlation functions (€&Afj<1), (nim(t)nf(o»
~1/(4mTt)ZeAi2, 0<Afj<1, while for weak initial corre-
lations, we have(n;,(t)n{(0))~1/(4=I't)? Af>1. The
marginal caseAj=1 is characterized byn,(t)n]/(0))
~(In 4Ft)d/(47rl“t)d12, Af=1.

VIl. SUMMARY AND CONCLUSION

In this work we studied, by analytical methods, the dy-

from both ends of the chajri8]. The relation of the present
model to Sutherland’s one suggests thatyaamical matrix
approachwould be possiblgin one-spatial dimensignto
treat the injection and ejection of particles at the boundary
(open boundary conditions
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namics of a symmetric two-species reaction-diffusion modeknowledged.

in arbitrary dimensions. We mapped this model onto an one-
dimensional RSOS-type growth model and obtained explicit
results for the latter. In particular, we were able to compute
the density profile for three various initial conditiofgni-
form and nonuniformin arbitrary dimensions.

Furthermore, we evaluated, for a translationally invariant
system, the instantaneous two-point correlation functions in
arbitrary dimensions. In one-spatial dimension, we consid- Solving the equations of motiond6) for the instanta-
ered the case where initial correlations were present. We olieous correlation functions in arbitrary dimensions, for the
served that when the initial correlations ateong enough  model under consideration in Sec. VI, we obtain the follow-
they affect the asymptotic dynamics. We also noticed a crossng expression:

APPENDIX: SOLUTION OF THE EQUATIONS OF
MOTION OF THE INSTANTANEOUS TWO-POINT
CORRELATION FUNCTIONS
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d d
t !
cil=cg(o) —4d“]'[ I, (4T1)+ 2 c (O)e—“dtl'[ o (4Ft)+4dFC (0)fdt'e—4fd<t—t>
r'+0 0
d

H Jar(—t)]- 2FC"(O)J dt’e—4rdt-t")

d

XE( [T 1 [ar—t)){1, sa[4T(t—t)]+1, _j[40(t-t)]}

t
+2rf dt’e4rdt=t)
a=1\g#a'=1...d 0

d
xElci;;(t')( I1 lra,[4r<t—t’>]{|ra+1[4r<t—t'>]+Ira1[4F(t—t'>]})

ata'=1...d
t .. d
—4er dt'e~4d=el (e I 1, [4r(t—t")]. (A1)
0 a=1 ¢

Using the properties of the derivatives of Bessel functions and then integrating by parts, we obtain the more compact form

(17).
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