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Two-speciesd-dimensional diffusive model and its mapping onto a growth model
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In this work, we consider a diffusive two-speciesd-dimensional model and study it in great detail. Two types
of particles, with hard core, diffuse symmetrically and cross each other. For arbitrary dimensions, we obtain the
exact density, the instantaneous, as well as noninstantaneous, two-point correlation functions for various initial
conditions. We study the impact of correlations in the initial state on the dynamics. Finally, we map the
one-dimensional version of the model under consideration onto a restricted solid-on-solid growth model with
three states and solve its dynamics.
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I. INTRODUCTION

Stochastic reaction-diffusion models have recently
tracted much interest in the last decade~see, e.g.,@1,2# and
references therein!; the latter appeared~directly or via map-
ping! as models for traffic flow@3#, kinetic biopolymeriza-
tion, @4#, reptation of DNA in gels@5#, interface growth@6,7#,
etc.

In this context, simple symmetric~SEP! @8# and asymmet-
ric exclusion processes, in one dimension~ASEP! @1,2,9#
play a particular role because of their relationships with
tegrable quantum spin systems~Heisenberg chains! and be-
cause of their connection with the Kardar-Parisi-Zha
~KPZ! equation@10#, directed polymers in random media@6#,
and shock formation~see, e.g.,@1# and references therein!.
These models have been extensively studied and the A
with open boundary conditions, as a simple driven diffus
model, exhibits a rich dynamical behavior involving differe
nonequilibrium phase transitions in the steady states. T
can be studied exactly on the basis of the so-calledmatrix
approach~MA !, an algebraic approach based on an ans
for the probability distribution which is related to the int
grability of some quantum spin chains. This approach p
vides the full solution of the ASEP~and also the SEP! model,
including the full phase diagram, density profile and, in pr
ciple, any equal-time correlation functions. Though, only fe
explicit results are known@11# about the dynamical correla
tion functions, much work has been done on the static pr
erties.

The MA has been generalized to solve the station
states of one-dimensional models with several species@12#
and, recently, a first-order phase transition in some mo
has been found@13# ~see also@14# where different results
were obtained, independently, for the same model!.

The lack of exact results for the dynamics of multispec
models@15,16# ~in particular in dimensiond.1 see also@17#
and references therein!, has motivated us to study in som
detail thedynamicsof a two-species model, which is relate
to the models introduced by Arndtet al. in @12,13#. We com-
pute explicitly, in arbitrary dimensions, the density, and t
two-point instantaneous and noninstantaneous correla
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functions. We then exploit the exact results for the two-po
correlation function to study a restricted solid-on-so
~RSOS! @6,7,18,19# growth model.

The paper is organized as follows. In Sec. II, we pres
the generalstochasticformalism within which we will work.
In Sec. III, for the model under consideration, we compute
arbitrary dimensions, the density for various initial states a
in the presence or absence of initial correlations. In Sec.
for a translationally invariant version of our model, w
evaluate the instantaneous two-point correlation function
arbitrary dimensions. In particular, in one-spatial dimensi
we assume both cases where initial correlations are abse
present. In Sec. V, we introduce and solve a growth mode
RSOS type ‘‘with three states.’’ This analysis is carried o
for different initial states~correlated and uncorrelated!. Fi-
nally, in Sec. VI, we calculate for systems with uncorrelat
~but random! as well as correlated initial states the noni
stantaneous two-point correlation functions.

II. THE FORMALISM AND THE MODEL

Consider an hypercubic lattice of dimensiond with N
sites (N5Ld), whereL represents the linear dimension of th
hypercube, and periodic boundary conditions are impos
Further, assume that local bimolecular reactions betw
speciesA and B takes place. Each site is either empty~de-
noted by the symbol 0) or occupied at most by one part
of type A ~respectively,B) denoted in the following by the
index 1 ~respectively, 2). The dynamics are parametriz
by the transition rates Gab

gd , where a,b,g,d50,1,2:
;~a,b!Þ~g,d!, Gab

gd : a1b→g1d.
Probability conservation impliesGab

ab52( (a,b)Þ(a8,b8)

3Gab
a8b8 , with Gab

gd >0, ;(a,b)5” (g,d).
For example, the rateG22

12 corresponds to the proces
BB→AB, while conservation of probability leads toG11

11

52(G11
101G11

011G11
001G11

021G11
201G11

211G11
121G11

22).
The state of the system is determined by specifying

probability for the occurence of configuration$n% at timet. It
is represented by the ketuP(t)&5($n%P($n%,t)u$n%&, where
the sum runs over the 3N configurations (N5Ld). At site i
the local state is denoted by the ketuni&5(100)T if the site
i is empty,uni&5(010)T if the sitei is occupied by a particle
of typeA(1) anduni&5(001)T otherwise. By now it is well
established that the master equation governing the dyna
©2001 The American Physical Society17-1
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of the systems can be rewritten as an imaginary-time Sc¨-
dinger equation@20#:

]

]t
uP~ t !&52HuP~ t !&, ~1!

whereH denotes the Markov generator, also calledstochastic
Hamiltonian, and is in general neither Hermitian nor norm
Its explicit form is given below. We also introduce theleft

vacuum^x̃u which is defined by

^x̃u[(
$n%

^$n%u. ~2!

Probability conservation yields the local equati
~stochasticity of H): ^x̃uH5(ea(m^x̃uHm,m1ea
.
he
le

be
al
p

o

nt

01611
o50⇒^x̃uHm,m1ea50, whereea denotes the unit vector in
the directiona (1<a<d) andm designates a point of the
hyperlattice labeled with help of itsd components:m
5(m1 , . . . ,md).

In this work, we assume that there are only symme
nearest-neighbor jump processes. A particleA ~respectively,
B) can jump, with rateG01

105G10
01.0 ~respectively,G02

20

5G20
02.0) to an adjacent site~in thed directions! if the latter

was previously empty. Such processes are symbolized by
‘‘reaction’’ AB↔BA ~respectively,BB↔BB). In addition
we assume that when two different particlesA and B are
adjacent, they can cross each other with rateG12

215G21
12.0.

These processes are schematized by the reactionAB↔BA.
The local Markov generator corresponding to this syste

which acts on two adjacent sitesm andm1ea reads
2Hm,m1ea51
0 0 0 0 0 0 0 0 0

0 G01
01 0 G10

01 0 0 0 0 0

0 0 G02
02 0 0 0 G20

02 0 0

0 G01
10 0 G10

10 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 G12
12 0 G21

12 0

0 0 G02
20 0 0 0 G20

20 0 0

0 0 0 0 0 G12
21 0 G21

21 0

0 0 0 0 0 0 0 0 0

2 , ~3!
e of
ral

lti-
nd
ch

er-
its

del

a

rre-
where the same notations as in Refs.@21,17# have been used
Probability conservation implies that each column in t
above representation sums up to zero. Locally, the
vacuum^x̃u has the representation^x̃u5(111)^ (111).

The action of any operator on the left vacuum has
simple summation interpretation. This observation will
crucial in the following. Below we shall assume an initi
stateuP(0)& and investigate the expectation value of an o
erator O ~observables such as density etc.! ^O&(t)
[^x̃uOe2HtuP(0)&.

From Eq.~3!, we can compute the equations of motion
the density and of the two-point correlation functions@17#.
For the density, we have

d

dt
^nm

A,B~ t !&[
d

dt
^x̃unm

A,Be2HtuP~0!&

52(
ea

^nm
A,B~Hm,m1ea1Hm2ea,m!&~ t !.

~4!

For the derivation of the equation of motion of two-poi
correlation functions we would proceed similarly, as in@17#.
ft

a

-

f

One should, however, pay attention to distinguish the cas
the correlation function of adjacent sites from the gene
case.

In general, whenG10
01, G01

10, G20
02, G02

20, G12
21, G21

12 are inde-
pendent parameters, the equations of motion of the mu
point correlation functions constitute an open hierarchy a
the dynamicsare not soluble. The stationary states of su
systems have been studied in@12# by Arndt et al. Recently it
has been shown@13# with the help ofquadratic algebratech-
niques@13,12# and numerical means that an asymmetric v
sion of this model exhibits a first-order phase transition, in
stationary state, whenG10

015G01
105G20

025G02
205G12

2151 and
G12

215q. The steady state of the density of the same mo
has also been studied independently by Rajewskyet al. @14#
who obtained different results; in@14#, the authors, argued
that there is no phase transition from the ‘‘mixed phase’’ to
‘‘disordered phase.’’

Here we assume

G10
015G01

105G20
025G02

205G12
215G21

125G, ~5!

which guarantees that the equations of motion of the co
lation functions close in arbitrary dimensions.
7-2
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TWO-SPECIESd-DIMENSIONAL DIFFUSIVE MODEL . . . PHYSICAL REVIEW E 65 016117
From now on we focus on the soluble model described
Eq. ~3! with equal rates, according to thesolubility con-
straints ~5!. Before studying statistical and dynamical pro
erties of this model, let us comment on its solvability. In t
single-species reaction-diffusion models, the solvability
herent to the closure of the hierarchy was explained in
framework of the duality transformations. In fact, it has be
shown that the spectrum of the single-species stocha
Hamiltonian ~with the solubility constraints! is identical to
the spectrum of an anisotropic spin-1/2 Heisenberg quan
HamiltonianXXZ in a magnetic field@20#. As shown in@21#,
the situation is quite different for the multispecies proble
and a general, comprehensive and unified understandin
the formal solubility is still lacking. However, for the mode
under consideration here, it has been shown@22# that the
stochastic Hamiltonian~3!, can be mapped, via a similarit
transformation, to an exactly integrable quantum spi
model introduced by Sutherland@23#.

III. EXACT STUDY OF THE DENSITY

In this section, we study the density of the system,
particular, when translation invariance is broken~the initial
density is nonuniform! and when correlations in the initia
state are present.

It follows from Eq. ~4! that the density of speciesj
P(A,B) at site m, labeled with its d components@m
5(m1 , . . . ,md)#, obeys to the following linear differential
difference equation@17#:

d

dt
^nm

j &~ t !522Gd^nm
j &~ t !1G (

a51

d

~^nm1ea
j &1^nm2ea

j &!.

~6!

We first consider the situation where particles are initia
nonuniformally distributed. Namely, we assume that partic
of type B are located in the region of spaceL/2,x1
<L, . . . ,L/2,xd<L while particles of typeA are initially
confined in the region 0<x1<L/2, . . . ,0<xd<L/2 ~we as-
sume thatL is even!. Within each of the two regions, par
ticles of each type are distributed uniformally with respect
densitiesrB(0) and rA(0). Solving Eq. ~6! for this initial
condition, we find

^nm
A ~ t !&5rA~0!e22dGt(

m8
^nm8

A
~0!& )

a51

d

I ma2m
a8
~2Gt !

5rA~0!e22dGt(
m8

)
a51

d FQS L

2
2maD I ma2m

a8
~2Gt !G

5rA~0! )
a51

d S (
0<ma8< L/2

e22GtI ma2m
a8
~2Gt !D , ~7!

whereI n(z) denotes the usual modified Bessel function. W
have also introduced the Heaviside functionQ(x)50 if x
,0 andQ(x)51 if x.1.
01611
y

-
e

n
tic

m

of

1

s

e

With help of the asymptotic expansion of the Bessel fun

tions and approximating(na
e2na

2 /4Gt'*dnae2na
2 /4Gt, we ob-

tain from Eq.~8! the long-time behavior of the density at si
m:

^nm
A ~ t !&'rA~0! )

a51

d F erfS L/22ma

A4Gt
D 2erfS ma

A4Gt
D

2
G ,

~8!

where erf(z) denotes the usual error function.
Similarly, we have for the density of particlesB:

^nm
B ~ t !&5rB~0! )

a51

d S (
L/2,ma8<L

e22GtI ma2m
a8
~2Gt !D

'rB~0! )
a51

d F erfS L2ma

A4Gt
D 2erfS L/22ma

A4Gt
D

2
G .

~9!

We now pass to the case where the distribution of p
ticles for each speciesj P(A,B) is given by (k j denotes a
real dimensionless constant! an initially correlated distribu-
tion:

^nm
j &~0!5r j~0!S )

i 51 . . .d
dmi ,0

1k j

3 )
i 51 . . .d

umi u2g i~12dmi ,0
! D . ~10!

The exact densities then read@17#

^nm
j &~ t !5r j~0!F )

i 51 . . .d
~e24GtI mi

~2Gt !!

1k j )
i 51 . . .d S e22Gt (

mi85” 0

umi8u
2g i I mi2m

i8
~2Gt !D G .

~11!

For k j5” 0, in the limit m;L@1 andGt@1, with s[m/L
and u[L2/4Gt. When s5O(1), then u;s2L2/4Gt
5m2/4Gt, and we obtain

^nm
j &~ t !;5

)
i 51

d
2e2s2u

~12g i !~4us2Gt !g i /2
if 0<g i,1,

)
i 51

d
~11e2s2u!z~g i !

~pGt !1/2
if g i.1,

~e2s2u ln~4usGt !!d

~pGt !d/2
if g i51,

~12!
7-3
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wherez(n)5(k>1k2n,n.1 is the Riemann zeta function.
It follows from these results that forg i5” 1, the density

decays as a power law of time. However, notice that wh
initial correlations arestrong ~i.e., 0,g i,1), the algebraic
decay of the density isnonuniversal~it depends ofg i). When
initial correlations areweak~i.e.,g i.1), the algebraic decay
of the density isuniversal. Hence the case whereg i51 is
marginaland there are logarithmic corrections to theuniver-
sal behavior.

For initial states decribed by Eq.~10!, with g i50 and
k j5” 0, then we have

^nm
j &~ t !;r j~0!F e2ds2u

~4pGt !d/2
1H G~1/2!2G~1/2,u!

A4p
J kj

3S 11
1

8Gt D G . ~13!

Therefore the dimensionality has a nontrivial effect, wh
d,2, the densities decay ast2d/2. Otherwise, whend
.2, ^nm

j &(t);t21.
On the other hand, whenk j50, the initial density of spe-

cies j vanishes on the hypercube except at the origin, wh
its value isr j (0). In this case, the limit considered abov
yields

^nm
j &~0!;

e2ds2u

~4pGt !d/2
. ~14!

Notice that because of conservation of the number of p
ticles, in thetranslationally invariant situation, we simply
have

rA~ t !5rA~ t50![rA , rB~ t !5rB~ t50![rB . ~15!

IV. INSTANTANEOUS TWO-POINT CORRELATION
FUNCTIONS FOR TRANSLATIONALLY INVARIANT

SYSTEMS

In this section we compute exactly the two-point corre
tion function for translationally invariant systems, in arb
trary dimensions for different initial states.

The equations of motion for the connected correlat
functions Cr

i j (t)[C2r
i j (t)[^nl

inm
j &(t)2r ir j5^n0

i nmÀl
j &(t)

2r ir j ,(i , j )P(A,B), read, with the notation: r
5(r 1 , . . . ,r a , . . . r d)[m2 l, wherea51, . . . ,d.

]

]t
Cr

i j ~ t !524GdCr
i j ~ t !12G

3 (
a51

d

~Cr1ea
i j

~ t !1Cr2ea
i j

~ t !!, uur uu>2,
01611
n

n

re

r-

-

n

]

]t
C ea

i j
~ t !52GFC 2ea

i j
~ t !1 (

a8Þa51 . . .d
$C ea2ea8

i j
~ t !

1C
ea1ea8
i j

~ t !%2~2d21!C ea
i j

~ t !G ,

]

]t
C 0

i j ~ t !50. ~16!

Solving the latter, we have, using known properties of mo
fied Bessel functions@see the Appendix, Eq.~A1!#:

Cr
i j ~ t !5 (

r8Þ0

Cr8
i j

~0!e24dGt )
a51

d

I r a2r
a8
~4Gt !

1C 0
i j ~0!e24dGt )

a51

d

I r a
~4Gt !2E

0

t

dte24dGt

3C ea
i j

~ t2t!S ]

]t
24dG D )

a51

d

I r a
~4Gt!

24dGE
0

t

dte24dGtC ea
i j

~ t2t! )
a51

d

I r a
~4Gt!

12GE
0

t

dte24dGt (
a51

d

C ea~ t2t!@ I r a11~4Gt!

1I r a21~4Gt!# )
a8Þa

I r a8
~4Gt!. ~17!

Restricting the solution toone-spatial dimension, with r
[um2 l u.0, the Laplace transform yields@ i , j P(A,B)#

C 1
i j ~ t !5e24Gt (

r 8>1

Cr 8
i j

~0!$I r 8~4Gt !1I r 821~4Gt !% ~18!

and more generally,

C r>1
i j ~ t !5e24Gt (

r 8>1

Cr 8
i j

~0!$I r 81r 21~4Gt !1I r 82r~4Gt !%.

~19!

Let us now considerone-spatial dimensionand assume tha
the initial correlations are given by

C r
l ~0!5k l r

2n l, n l>0, l P~AA,BB,AB!. ~20!

We discuss the caseuk l u.0 while the casek l50 corre-
sponds either to the situation where no particle is presen
the lattice initially, or, when all sites of the lattice are occ
pied by particles of speciesi ~or j ). An alternative is that the
system would be initially in its steady state. When a sin
species is present initially, say speciesA, we recover the
known problem of symmetric diffusion of hard particlesA
1B↔B1A. When the lattice is full~or empty! initially, no
7-4
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dynamics takes place. A single-species one-dimensional
cessA1A↔B1B with a correlated initial state as in Eq
~20! has been studied in@18#.

Again we can infer the asymptotic behavior of the tw
or
a

ns
e
n

-
e

01611
o-point connected correlation functions in the limitGt@1 with
v[L2/8Gt,` @17#.

It is useful for the sequel to introduce the definitions
the auxiliary functions@17#:
F1~v,s,n l ![
H GS 12n l

2 D1GS 12n l

2
,s2v D2GF12n l

2
,v~12s!2G2GF12n l

2
,v~11s!2G J

A4p
, ~21!

F2~v,s,n l ![Av
p H e2s2v

12n l
11J . ~22!

We distinguish two regimes
~i! For r !L, with r a

2/8Gt!1 ands[r /L,

C r
l ~ t !;5

k lF1~v,s,n l !

A4p~8Gt !n l /2
if 0<n l,1,

k l@2z~n l !#

~8pGt !1/2
if n l.1,

k l ln@8Gv~12sa!t#

~8pGt !1/2
if n l51.

~23!

~ii ! For r @1,r[sL;L, we have

C r
l ~ t !;5

k lS F2~v,s,n l !

A4p~8Gt !n l /2
D if 0<n l,1,

k l@~11e2s2v!z~n l !#

~8pGt !1/2
if n l.1,

k le
2s2v ln~8Gvst !

~8pGt !1/2
if n l51.

~24!
n

As for the density, it follows from these results that f
n l5” 1, the ~connected-!correlation functions decay as
power law of time. When initial correlations arestrong~i.e.,
0,n l,1) the power-law decay of the correlation functio
is nonuniversal. In contrast, when initial correlations ar
weak ~i.e., n l.1), the algebraic decay of the correlatio
functions isuniversal. The case wheren l51 is marginaland
logarithmic corrections to theuniversal behaviorarise.

In arbitrary dimension (d>1), we consider a translation
ally invariant random but uncorrelated intial state, describ
by

Cr
l ~0!5k l ,l P~AA,BB,AB!, ~25!
d

where, as above,k l5” 0.
The asymptotic behavior (L,Gt@1 with v[L2/8Gt,`

andsa[r a /L) of the connected correlation functions is the
@17#:

Cr
l ~ t !

;5 k l S 11
1

16Gt D
d

)
a51

d

F1,a~v,sa ,n l50!, r a!L,

k l S 11
1

16Gt D
d

)
a51

d

F2,a~v,sa ,n l50!, r a;L@1,

~26!
7-5
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where the quantitiesF1,a andF2,a are obtained, respectively
from Eqs. ~21! and ~22! on the substitution ofs by sa

[r a /L.

V. THE MAPPING ONTO A RESTRICTED SOLID-ON-
SOLID GROWTH MODEL WITH ‘‘THREE STATES’’

In this section, we introduce a growth model ofrestricted
solid-on-solid~RSOS! type with ‘‘three states,’’ by exploit-
ing a mapping of the one-dimensional model studied in
previous sections.

Let us briefly recall that the RSOS growth models a
e.g., useful to describe the spatial fluctuations of the~one-
dimensional, of lengthL) interface location in the magnet
zation profile between coexistent phases in two-dimensio
models of ferromagnets, such as in the zero-field planar Is
model @2#. In such models, at zero temperature, every p
minimizing the energy of the systen is a sequence ofL binary
numbersnj50,1 with j 51, . . . ,L. The stochastic variable
nj has the valuenj50 if the j th segment of the interfac
steps upwards~in an angle ofp/4). The valuenj51 corre-
sponds to the case where the segments steps downward
an angle ofp/4. The quantitiesnj50,1 can be interpreted a
occupation numbers relating the interface heighthj accord-
ing to hj2hj 215122nj @2#. In this case the displacemen
dhr(t), at timet of the segment of the interface from the sit
j 1 to j 2. j 1, with r[ j 22 j 1.0 is given by dhr(t)
5(k51

r @122nk(t)# and thusudhr 112dhr u51.
Here we consider an extension of the above model.

consider that the configurations minimizing the energy~at
zero temperature! are of the form $xAn1

A1xBn1
B ,xAn2

A

1xBn2
B , . . . ,xAnL

A1xBnL
B%, where the discrete stochast

variablexAnj
A1xBnj

B can takethree values. The casexAnj
A

1xBnj
B50 again corresponds to the situation where thej th

segment steps upwards with an angle ofp/4. The case
xAnj

A1xBnj
B5xA ~respectively,xAnj

A1xBnj
B5xB) describes

the situation where thej th segment forms an angl
arctan(12xA) @respectively, arctan(12xB)# with the hori-
zontal. WhenxB50 ~respectively,xA50) and xA52 ~re-
spectively, xB52), we recover the above-mentioned tw
state RSOS growth model. In this sense the growth mo
which we study hereafter is a ‘‘three-states’’ extension of
usual RSOS model@2,7,18,19#. In addition the mapping with
the diffusive model is clear, the presence of particle of s
ciesA ~respectively,B) at sitej translates in the language o
the growth model with the fact that the related segmen
the interface forms an angle arctan(12xA) ~respectively,
arctan(12xB)) with the horizontal. In this picture, the jump
ing of the diffusive particles correponds to the fluctuation
the orientation of the related segments of the interface.

We consider a translationally invariant system; the d
placement of the~one-dimensional! interface, at timet, from
the sites k1 to k2.k1, with r 5k22k1.0 is given by
hk2

(t)2hk1
(t)[dhr(t), where
01611
e
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dhr~ t ![ (
m51

r

@12xAnm
A~ t !2xBnm

B~ t !#. ~27!

Therefore, in the model considered here, we ha
maxudhr 11 (t) 2 dhr(t) u 5 max (uxA21u , uxB21u ,1), in-
stead of the usual constraintudhr 11(t)2dhr(t)u51 of the
conventional RSOS models. The mean displacement of
interface readŝ dhr(t)&5r (12xArA2xBrB) thus, if one
wants to impose a zero mean displacement of the interfa
we have to require thatxArA1xBrB51.

In this section we are interested in the computation of
fluctuations ofdhj (t):

^@dhr~ t !#2&[w2~r ,t !5@~xA1xB!221#r 2

1 (
r 851

r

(
l 51

r 2r 811

@xA
2^nl

Anl 1r 8
A &~ t !

1xB
2^nl

Bnl 1r 8
B &~ t !12xAxB^nl

Anl 1r 8
B &~ t !#,

~28!

wherew(r ,t) is the physical width of the interface.
Using the fact that@( i , j )P(A,B)# ]/]t( l 51

r ^nm
i nm1 l

j &
3(t)52G@^nm

i nm1r 11
j &(t)2^nm

i nm1r
j &(t)# and (s51

r

3( l 51
r 2s]/]t^nm

i nm1 l
j &(t)52G@^nm

i nm1r 11
j &(t)2^nm

i nm11
j &

3(t)#, we obtain the following equation of motion for th
width:

]w2~r ,t !

]t
54G@xA

2$C r
AA~ t !2C 1

AA~ t !%1xB
2$C r

BB~ t !2C 1
BB~ t !%

12xAxB$C r
AB~ t !2C 1

AB~ t !%#, r .1, ~29!

with w2(1,t)5w2(1,t50)5(xA1xB)21122(rAxA
1rBxB).

For r .1, we thus have

w2~r ,t !5w2~r ,0!14GE
0

t

dt8@xA
2$C r

AA~ t8!2C 1
AA~ t8!%

1xB
2$C r

BB~ t8!2C 1
BB~ t8!%12xAxB$C r

AB~ t8!

2C 1
AB~ t8!%#, ~30!

where

w2~r ,0!5@~xA1xB!21122~rAxA1rBxB!#r 2

12 (
r 851

r

~r 2r 8!@xA
2^nm

Anm1r 8
A &~0!

1xB
2^nm

Bnm1r 8
B &~0!12xAxB^nm

Anm1r 8
B &~0!#.

~31!
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With help of the formula @24#:4G*0
t dt8e24Gt8I n(4Gt8)

5 4Gte24Gt @ I 0(4Gt) 1 I 1(4Gt)# 1 n @e24GtI 0 (4Gt ) 2 1 #
12e24Gt(k51

n21(n2k)I k(4Gt), and with the explicit expres
sion of the correlation functions~18! and~19!, we obtain the
following exact expression forw(r ,t):

w2~r ,t !2w2~r ,0!

52e24Gt (
r 8>1

@xA
2Cr 8

AA
~0!1xB

2Cr 8
BB

~0!12xAxBCr 8
AB

~0!#

3F (
k51

r 1r 822

~r 1r 82k21!I k~4Gt !

1 (
k51

r 1r 821

~r 82k2r !I k~4Gt !

22 (
k51

r 822

~r 82k!I k~4Gt !2I r 821~4Gt !G . ~32!

We will now specifically focus on two kinds of initia
states:

~i! We assume first that the system is initially charact
ized by an alternating periodic array of particles of typeA
and B. We consider thus an initial stateuP(0)&
51/2(uABAB . . . &1uBABA . . . &), with xA1xB52 ~in this
case ^dhr(t)&50). This initial flat interface leads to rA
5rB51/2, and for the connected initial correlation fun
tions, we haveC r

AA(0)5(21)r /45C r
BB(0)52C r

AB(0).
It follows from Eq.~31! that the initial fluctuations in this

case readw2(r ,0)5r @4r 1 3
4 (xA2xB)221#, for r .1 and r

even. Therefore, we also havew2(1,t)53.
For this initial configuration, the expression~18!

simplifies and we have C 1
AA(t)5C 1

BB(t)5

2C 1
AB(t)52(e24Gt/4)I 0(4Gt). The general expressio

~32! of the fluctations reads w2(r ,t)
2w2 (r ,0) 5 (xA2xB)2 G*0

t dt8e24Gt8 $I 0 (4 Gt8 ) 1 ( r 8>1

(21)r 8@ I r 1r 821(4Gt8)1I r 2r 8(4Gt8)#%. From this expres-
sion, using the asymptotic behavior of the Bessel functio
it is possible to obtain the long-time behavior~for Gt
@1, r @1) of the fluctuations
01611
-

s,

w~r ,t !22w~r ,0!2

5~xA2xB!2AGt

2p
$11O@~Gt !21!#1~xA2xB!2

3 (
r 8>1

~21!r 8E
0

t dt8

A8pGt8

3$exp@2~r 1r 821!2/8pGt8#

1exp@2~r 2r 8!2/8pGt8#%$11O@~r 2r 8!22#%. ~33!

Thus for the initial condition considered here, whenxA
ÞxB , it follows from Eq. ~33! that the fluctuations grow a
w(r ,t)'(Gt)1/4.

On the other hand, it is known that for theflat interface
~or ‘‘sawtooth’’ initial state!, whose dynamics are coded in
two-state modeldhr5(m50

n (122nm
A), the fluctuations grow

as ;(Gt)1/4 @7,18,2#. In the situation considered here, th
fluctuations still grow asw(r ,t);(Gt)1/4 and thus the details
of the model and its ‘‘three-state’’ character only appe
through the amplitude (xA2xB)2. WhenxA5xB51, the ini-
tial configuration corresponds to a straight line and, acco
ing to Eq.~33!, there are no fluctuations. Let us also note th
when, e.g.,xA52 andxB50, theB particles play the role of
the vacancies in the two-state model and the model~27! is
exactly mapped onto the well-studied two-state mo
@7,18,2#.

~ii ! We now investigate the fluctuations ofdhr(t) in the
presence of initial correlations.

We assume that particles of typeA andB are distributed
according to@18#

C r
l ~0!5k l r

2n l,n l>0,l P~AA,BB,AB!, ~34!

which corresponds, via the mapping~27!, in the language of
the growth model, to an interface with initial fluctuation
given by Eq. ~31!, where ^nm

i nm1r 8
j &(0)5C r 8

i j (0)
1r ir j , (i , j )P(A,B).

Let us define the following quantity:

n5min~nAA ,nBB ,nAB!. ~35!

With help of Eq. ~29! and Eqs.~20! and ~23!, we can
compute the asymptotic expression of the fluctuations
Gt@1 and r @1, with v[L2/8Gt and s[r /L5O(1) ~we
assume thatxAxB5” 0), which reads
w~r ,t !22w~r ,0!2;5
2Gt

Apn~8pGt !n/2
@F1~v,s,n!2F2~v,s,n!# if 0 ,n,1,

A2Gtj~n!~12e2s2v! if n.1,

A2Gt

p
@ ln~8Gvt !2e2s2v ln~8Gvst !# if n51,

~36!
7-7



.

io

as

e
ce
ng

tio

. I

r

b

el

ou
s.
m

re

M. MOBILIA AND P.-A. BARES PHYSICAL REVIEW E 65 016117
where the quantitiesF1 and F2 have been defined in Eqs
~21!, ~22!, andj(n) is the usual Riemann zeta function.

We see that in the presence of initial correlations~34!, the
fluctuations are dominated by the smallest initial correlat
exponentn. Therefore, ifn5nAA ~respectively,n5nBB), the
dominant contribution~36! to the fluctuations are the same
for a correlated two-state model wherexA52 and xB50
~respectively,xA50 andxB52) where theB ~respectively,
the A) particles play the role of vacancies@18#.

From Eq. ~36! we see that initial correlations affect th
long-time behavior of the fluctuations of the height displa
ment of the interface when the correlations are ‘‘stro
enough’’ ~i.e., 0,n,1), thus w(r ,t);(Gt)1/22n/4. Con-
versely, for ‘‘weak’’ initial correlations (n.1) we recover
the usual fluctuation exponent:w(r ,t);(Gt)1/4. The inter-
mediate casen51, corresponds to themarginal behavior
wherew(r ,t);(Gt)1/4Aln Gt.

For the sake of completness, and to conclude this sec
we compute the spatiotemporal height correlations^@hr 1

(t)

2hr 2
(0)#2&, with 1!r 1!r 2&L for the initial state~34!. To

do this we have to anticipate some results of the Sec. VI
fact one computes

^@hr 1
~ t !2hr 2

~0!#2&2^@hr 1
~0!2hr 2

~0!#2&

5@w2~r 1 ,t !2w2~r 1,0!#22(
j 51

r 1

(
k51

r 2

xA
2@^nj

A~ t !nk
A~0!&

2^nj
A~0!nk

A~0!&#22(
j 51

r 1

(
k51

r 2

$xB
2@^nj

B~ t !nk
B~0!&

2^nj
B~0!nk

B~0!&#12xAxB@^nj
A~ t !nk

B~0!&

2^nj
A~0!nk

B~0!&#%, ~37!

where the expressions of^nj
A,B(t)nk

A,B(0)& are given in Eqs.
~49!–~51!. The asymptotic behavior (Gt@1, 1!r 1!r 2
&L) of Eq. ~37! is obtained with the help of Eqs.~49!–~51!
and reads@26#: ^@hr 1

(t)2hr 2
(0)#2&2^@hr 1

(0)2hr 2
(0)#2&

;@w2(r 1 ,t)2w2(r 1,0)#. Therefore, the long-time behavio
of ^@hr 1

(t)2hr 2
(0)#2& also obeys Eq.~36!, where, in this

cases[r 1 /L.
It is interesting at this point to compare the results o

tained here and the Family-Wilcsek Ansatz~FWA!, devel-
oped for the description of a ballistic deposition mod
which predictsw2(L,t)'ta/zf (L2/t2/z) @25,26#. Here, be-
cause of the diffusive nature of the model,z52 and thus we
get ~i! for the flat interface an exponenta51, and for the
case~ii ! a5max(1,22n). In both cases~i! and ~ii !, when
n.1, in the regimeL2@Gt ~i.e., v@1) we obtain a scaling
function f (L2/t)'const, in agreement with FWA.

VI. NONINSTANTANEOUS TWO-POINT CORRELATION
FUNCTIONS

In this section, we compute exactly the noninstantane
two-point correlation functions for various initial state
Similar quantities have already been computed, for so
01611
n

-

n,

n

-

,

s

e

specificsingle-speciesmodels~see, e.g.,@18,27–29#!.
Let us first consider an uncorrelated initial distribution

uP~0!&5S 12rA~0!2rB~0!

rA~0!

rB~0!
D ^ Ld

,

such that

^nm
A ~0!nl

A~0!&5rA~0!dm,l1rA~0!2~12dm,l!,

^nm
B ~0!nl

B~0!&5rB~0!dm,l1rB~0!2~12dm,l!,

^nm
A ~0!nl

B~0!&5^nm
B ~0!nl

A~0!&5rA~0!rB~0!~12dm,l!.
~38!

We then have

^nm
A ~ t !nl

A~0!&5rA
2~0!1~rA~0!2rA

2~0!!

3 )
a51 . . .d

e22GtI ma2 l a
~2Gt !, ~39!

^nm
A ~ t !nl

B~0!&

5rA~0!rB~0!F12 )
a51 . . .d

e22GtI ma2 l a
~2Gt !G

5^nm
B ~ t !nl

A~0!&, ~40!

^nm
B ~ t !nl

B~0!&5rB
2~0!1@rB~0!2rB

2~0!#

3 )
a51 . . .d

e22GtI ma2 l a
~2Gt !. ~41!

We are interested in the asymptotic behavior (Gt@1 andu
5L2/4Gt,`) of the above functions in the two regimes:

~i! uma2 l au[r a;L@1, in this casesa5r a /L5O(1).
~ii ! uma2 l au[r a!L, in this casesa5r a /L5O(1/L).
It is worth noting that the autocorrelation functions a

obtained in the second regimes~ii !. We then have

^nm
A ~ t !nl

A~0!&

5rA
2~0!1

@rA~0!2rA
2~0!#e2(

a51

d

sa
2u

~4pGt !d/2
1O~1/td!,

~42!

^nm
A ~ t !nl

B~0!&5rA~0!rB~0!F 12
e2(

a51

d

sa
2u

~4pGt !d/2
1O~1/td!G

5^nm
B ~ t !nl

A~0!&, ~43!
7-8
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^nm
B ~ t !nl

B~0!&

5rB
2~0!1

~rB~0!2rB
2~0!!e2(

a51

d

sa
2u

~4pGt !d/2
1O~1/td!.

~44!

In these regimes, we have a power-law decay of correla
functions (i , j )P(A,B)) namely,

^nm
i ~ t !nl

j~0!&;~Gt !2d/2e2(
a51

d

sa
2u. ~45!

Let us now pass to the case where the initial state is
related according to

^nm
i ~0!nl

j~0!&5Ki j )
a51, . . . ,d

~12d r a,0!ur au2D i j
a
,

r a[uma2 l au, D i j
a .0, ~ i j !P~A,B!,

Ki j .0,dist~ l ,m!.0, ~46!

and

^nm
i ~0!nm

j ~0!&5r i~0!r j~0!d i j . ~47!

Notice that in one dimension the initial state Eqs.~46! and
~47! is translationally invariant and reads

^nm
i ~0!nl

j~0!&5^nr 5um2 l u
i ~0!n0

j ~0!&5Ki j ~12d r ,0!r
2D i j

1r i~0!d i , jd r ,0 , Ki j 5Kj i , n i j 5n j i .

~48!

This translational invariance which is broken@see Eq.~46!#
in higher (d>2) dimensions leads to two regimes:

~i! We begin with the one-dimensional case (d51), here
r 5r a[um2 l u. Because of the initial translational invaria
state, we expect that the noninstantaneous correlation f
tions only depends onr 5m2 l , and we obtain

^nm
A~ t !nl

A~0!&5^nr
A~ t !n0

A~0!&

5rA~0!e22GtI r~2Gt !

1KAA (
r 8Þ0

ur 8u2DAAe22GtI r 2r 8~2Gt !,

~49!

^nm
A~ t !nl

B~0!&5KAB (
r 8Þ0

ur 8u2DABe22GtI r 2r 8~2Gt !

5^nm
B~ t !nl

A~0!&, ~50!
01611
n

r-

c-

^nm
B~ t !nl

B~0!&5^nr
B~ t !n0

B~0!&

5rB~0!e22GtI r~2Gt !

1KBB (
r 8Þ0

ur 8u2DBBe22GtI r 2r 8~2Gt !.

~51!

Because all the processes in the evolution operator
symmetric ~unbiased!, there is no drift, therefore
^nr

A,B(t)n0
A,B(0)&5^n2r

A,B(t)n0
A,B(0)&.

~ii ! In higher dimensions (d>2),

^nm
A ~ t !nl

A~0!&5rA~0!e22dGt )
a51 . . .d

I ma2m
a8
~2Gt !

1KAA (
(m185” l 1 , . . . ,md85” l d)

)
a51 . . .d

3uma82 l au2DAA
a

e22GtI ma2m
a8
~2Gt !,

~52!

^nm
A ~ t !nl

B~0!&5KAB (
(m185” l 1 , . . . ,md85” l d)

)
a51 . . .d

3uma82 l au2DAB
a

e22GtI mi2m
i8
~2Gt !,

~53!

^nm
B ~ t !nl

B~0!&5rB~0!e22dGt )
a51 . . .d

I ma2m
a8
~2Gt !

1KBB (
(m185” l 1 , . . . ,md85” l d)

)
a51 . . .d

3uma82 l au2DBB
a

e22GtI ma2m
a8
~2Gt !,

~54!

^nm
B ~ t !nl

A~0!&5KBA (
(m185” l 1 , . . . ,md85” l d)

)
a51 . . .d

3uma82 l au2DBA
a

e22GtI mi2m
i8
~2Gt !.

~55!

We observe that in higher dimensions, because of the in
correlations, the noninstantaneous correlation functions
longer depend onuma2 l au.

We can express the asymptotic behavior of these no
stantaneous correlation functions in an unified way includ
both d51 and d>2 cases. Assuming thatr a5uma2 l au
;umau@1, with r a5saL andu5L2/4Gt,`, Gt,r @1, the
asymptotics read@( i , j )P(A,B)#
7-9
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^nm
i ~ t !nl

j~0!&; )
a51 . . .d

F e2sa
2u

12D i j
a
Ausa

2

p

3
1

4~uGsa
2 t !D i j

a /2G1O~ t22d!,

0,D i j
a ,1. ~56!

Moreover,

^nm
i ~ t !nl

j~0!&;
1

~4pGt !d/2 S r i~0!e2(
a51

d

sa
2ud i , j

1Ki j )
a51 . . .d

z~D i j
a !1O~ t22d!D , D i j

a .1.

~57!

When D i j
a 51, we have the marginal case with logarithm

corrections

^nm
i ~ t !nl

j~0!&;
1

~4pGt !d/2 S r i~0!e2(
a51

d

sa
2ud i , j

1Ki j )
a51 . . .d

ln~4usaGt !1O~ t22d!D ,

D i j
a 51. ~58!

Again, strong initial correlations lead to an algebraic dec
of correlation functions (0,D i j

a ,1), ^nm
i (t)nl

j (0)&
;1/(4pGt)(aD i j

a /2, 0,D i j
a ,1, while for weak initial corre-

lations, we havê nm
i (t)nl

j (0)&;1/(4pGt)d/2, D i j
a .1. The

marginal caseD i j
a 51 is characterized bŷ nm

i (t)nl
j (0)&

;(ln 4Gt)d/(4pGt)d/2, D i j
a 51.

VII. SUMMARY AND CONCLUSION

In this work we studied, by analytical methods, the d
namics of a symmetric two-species reaction-diffusion mo
in arbitrary dimensions. We mapped this model onto an o
dimensional RSOS-type growth model and obtained exp
results for the latter. In particular, we were able to comp
the density profile for three various initial conditions~uni-
form and nonuniform! in arbitrary dimensions.

Furthermore, we evaluated, for a translationally invari
system, the instantaneous two-point correlation function
arbitrary dimensions. In one-spatial dimension, we cons
ered the case where initial correlations were present. We
served that when the initial correlations arestrong enough,
they affect the asymptotic dynamics. We also noticed a cro
01611
y

-
l

e-
it
e

t
in
-
b-

s-

over in the dynamics between the case ofstrong and weak
initial correlations.

We mapped the one-dimensional version of the reacti
diffusion model on a ‘‘three-states’’ RSOS-type grow
model. Using the exact, instantaneous correlation functio
we computed the exact expression of fluctuations of the
terface for the latter model. We specifically considered
case of a ‘‘flat interface’’ where the fluctuations grow
(Gt)1/4, as in the corresponding ‘‘two-state’’ growth mode
the three-state nature of the model considered only app
in the amplitude. We also considered the case where the
tial configuration is translationally invariant, random an
correlated. We saw that the initial correlations are ‘‘strong
they affect the long-time behavior of the fluctuations of t
displacement interface. Conversely, ‘‘weak’’ initial correl
tions, do not affect the dominant term and the fluctuatio
still grow as (Gt)1/4. This is analogous to what happens
the two-state RSOS systems where initial correlations af
the long-time behavior of the width@18#.

Finally we computed in arbitrary dimensions the exa
noninstantaneous two-point correlation functions for initia
uncorrelated states as well as for cases where correla
were present. Here we again observed the effect ofstrong
initial correlations on the dynamics and a crossover betw
regimes wherestrong and weak initial correlations takes
place.

We conclude this work by addressing an interesting qu
tion based on the similarity of thestochastic Hamiltonian
under consideration with the integrable Sutherland’s qu
tum spin system@22,23#. It is known that for the one-
dimensional SEP model, the relation with the Heisenb
chain has been fruitful to obtain a(dynamical) matrix formu-
lation of the probability distribution, which allowed to solv
the (dynamical)density profile for a SEP model with ope
boundary conditions~particles were injected and ejecte
from both ends of the chain! @8#. The relation of the presen
model to Sutherland’s one suggests that adynamical matrix
approachwould be possible~in one-spatial dimension! to
treat the injection and ejection of particles at the bound
~open boundary conditions!.
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APPENDIX: SOLUTION OF THE EQUATIONS OF
MOTION OF THE INSTANTANEOUS TWO-POINT

CORRELATION FUNCTIONS

Solving the equations of motions~16! for the instanta-
neous correlation functions in arbitrary dimensions, for t
model under consideration in Sec. VI, we obtain the follo
ing expression:
7-10
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C ur u
i j ~ t !5C 0

i j ~0!e24dGt )
a51

d

I r a
~4Gt !1 (

r 8Þ0

Cr 8
i j

~0!e24Gdt )
a51

d

I r a2r
a8
~4Gt !14dGC 0

i j ~0!E
0

t

dt8e24Gd(t2t8)

3 )
a51

d

I r a
@4G~ t2t8!#22GC 0

i j ~0!E
0

t

dt8e24Gd(t2t8)

3 (
a51

d S )
aÞa851 . . .d

I r a8
@4G~ t2t8!#$I r a11@4G~ t2t8!#1I r a21@4G~ t2t8!#% D 12GE

0

t

dt8e24Gd(t2t8)

3 (
a51

d

C ea
i j

~ t8!S )
aÞa851 . . .d

I r a8
@4G~ t2t8!#$I r a11@4G~ t2t8!#1I r a21@4G~ t2t8!#% D

24dGE
0

t

dt8e24Gd(t2t8)C ea
i j

~ t8! )
a51

d

I r a
@4G~ t2t8!#. ~A1!

Using the properties of the derivatives of Bessel functions and then integrating by parts, we obtain the more com
~17!.
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